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Fermi liquid theory and magnetic impurity systems: I. 
Quasi-particle Hamiltonians and mean field theory 

A C Hewson 
Department of Mathematics, Imprial College, h d m  SW7 2BZ, UK 

Received 9 June 1993 

Abstract. We give explicit quasi-p?Xicle Hamiltonians, including intedms. for several 
magnetic implrity models and show that the application of mean field theory to these gives 
as~rmptotically exact resultn as T + 0 and H + 0 corresponding to FWni liquid theory. This 
approach pmvides a conceptual link beiwem the intuitive phenanenological theory of Landau 
and Nod&res, and the microscopic theory of Luninger and Yamada 

1. Introduction 

In this paper (I) we discuss the re!ation between the renormalization group approach [l] 
to the low-temperature behaviour of magnetic impurity models and the phenomenological 
Fermi liquid theory as formulated by Landau [Z]. The link between these approaches 
was recognized by Nozikres [3] soon after Wilson’s original numerical renormalization 
group calculations on the sk model. Nozieres used arguments based on phenomenological 
Fermi liquid theory to give a simple derivation of Wflson’s result for the ‘ x / y ’  ratio as 
well as a derivation of an exact expression for the Tz-term in the impurity conhibution 
to the resistivity. Here we want to make that link rather more explicit by giving the 
effective Hamiltonian for the quasi-particle excitations and then show that the application 
of mean field theory to this model corresponds to the Landau-lie Fermi liquid theory. 
In a subsequent paper (IQ we develop these ideas further in the form of a renormalized 
perturbation expansion that can be used to extend the calculations beyond the Fermi liquid 
regime to all temperatures (for a preliminary account of thii approach see [41). 

The Landau phenomenological Fermi liquid theory I21 is based on the assumption that 
the single (quasi-)paaicle excitations at very low temperatures in an interacting Fermi 
system are in one-to-one correspondence with those of the non-interacting system. Using 
these one-eleceon states a total energy functional Ebt is then constructed of the form 

where &a,., is the deviation in occupation number of the single-particle state la). U with 
an excitarion energy Z$ from its ground-state value, and f::’ is the leading term due to 
the quasi-particle interactions. A free-energyfunctional F is constructed from (l), retaining 
only the first two terms, together with the Fermi-Dmc form for the entropy of the quasi- 
particles. Minimization of F with respect to 6na leads to asymptotically exact results for 
the thermodynamic behaviour as T ,  H + 0 for systems in a normal paramagnetic ground 
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state. The reason why the higher-order terms in (1) give negligible effects in this limit is 
because the expectation value of an,, (Sn,) + 0 as T + 0 and H -P 0. The effective 
quasi-particle energy in the presence of other excitations is given by 

Microscopic perturbation calculations verify the Landau results [5 ,  61 but, due to the 
mathematical complexity of the arguments used, some of the more intuitive ideas of Landau 
are lost. Here we show that the renormalization group, where one derives an explicit 
effective Hamiltonian for the low-energy excitations, provides a conceptual framework 
which can link the two approaches so retaining many of the intuitive aspects of the Landau 
theory. 

We base our initial discussion on the Anderson model [7] for a 3d transition (or 4f rare 
earth) ion in a metallic host. In its simplest form the model has an impurity d level Ed, 
taken to be non-degenerate, which is hybridized with the host conduction electrons via a 
matrix element v k .  When the interaction term U between the electrons in the local d State 
is included, the Hamiltonian has the form 

where A(o) = z xk [ V,[%(o - 6 k )  is the function which controls the width of the virtual 
bound state resonance at Ed in the non-interacting model (U = 0). In the limit of a 
wide conduction band with a flat density of states, A(o) becomes independent of o and 
can be taken as a constant, A. For << eF, ed + U >> EF, where EF is the Fermi 
level and I t d  - E F I .  IEd + U - E F L  >> A, the model is equivalent to the s-d model with 
an antiferromagnetic interaction Jpo = ( U A / n ) [ s d  - E F I ~ E ~  + U - EFI. where po is the 
conduction electron density of states. 

The non-degenerate Anderson model is now very well understood as a result of 
numerical renormalization group[ I] and exact Bethe unsufz calculations [SI. There are also 
exact relations for the model, such as the Friedel sum rule [9] and Ward identities [IO], which 
have been established within the framework of microscopic perturbation theory. Our aim 
here is to attempt to gain insight into these solutions which might be of help in considering 
the problems posed by other strongly correlated fermion systems, such as heavy fermions 
and high-Tc superconductors, which at present are not well understood. 

2. The non-degenerate Anderson model 

In the numerical renormalization group approach devised by Wilson [I] and applied to the 
wd and Anderson models wave packets for the conduction electrons about the impurity 
site were used so that the Hamiltonian could be cast in the form of an effective linear 
chain with the impurity at one end. The energy states over a decreasing energy scale were 
then calculated by the iterative diagonalization of chains of increasing length, retaining 
only the lower-energy states of the chain at each iteration. This calculation confirmed that 
the behaviour at low temperatures and low fields is govemed by the strong coupling fixed 
point of the renormalization group transformation in the Kondo regime ( J  + 00, for the 
antiferromagnetic s-d model). Wilson derived the effective Hamiltonian for the low-lying 
energy states about this fixed point, which can be re-expressed in a form equivalent to the 
original Anderson model (3) with renormalized parameters [Ill, = ?r xk Ivk128(6  --E&), 
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fi, and 2.3. corresponding to the effective Hamiltoniin 

where the energy level Zd.0 is measured with respect to the Fermi level. 
In the first-principles calculation of Wilson for the s-3 model, the renormalized 

parameters were determined by fitting the levels to those calculated by the iterative 
diagonalization scheme. In the s-d or local moment regime of the model there is only 
one energy scale involved which is the Kondo temperature TK. The important point which 
makes the renormalized effective Hamiltonian (4) tractable at low temperatures is that it 
describes excitations from the exact ground state so that the interaction term fi between 
excitations only comes into play when there is more than one excitation from the ground 
state. If a single-particle excitation or single-hole excitation is created this interaction term 
can be ignored and the one-electron Hamiltonian remaining can be diagonalized and written 
in the form 

-101 t where el," are the one-electron energies, and cl," and cl," the corresponding ~~ creation and 
annihilation operators. The excitation energy Zj.2 can be identified with that in the Landau 
free energy functional ( I ) .  We do not need to diagonalize (4) explicitly because we find 
later that we only need the result of the impurity quasi-particle density of states ,&,&a) 
which can be straightfonvardly derived from the Hamiltonian for fi = O  using the equations 
of motion of the one-particle Green functions. This gives 

(6) &(w) = (l/T)h/[(@ -Zd)"+ h'] 
corresponding to a Lorentzian resonance. 

For fi # 0 (4) can be written using the single-particle eigenstam of (5) as a basis 

where 

I 

Since.it is the excitations of the interacting system from its ground state which are. 
described by the effective Hamiltonian (4). it is appropriate to transform this Hamiltonian 
to operators which describe the single-particle excitations 

4." = P!." C I , ~  PI." € 1 , ~  > 6F (9)' 

(10) t c!,~ = hi." ~ 1 , "  = hI.< 61.0 < EF 

where the ground state is such that p,.,,[O) = 0 and h1,JO) = 0. The interaction 
term has to be normal ordered in terms of these operators so that HeslO) = 0, and the 
Hamiltonian describes interactions only between excitations from the ground state. In the 
mean field approximation the expectation value of operators in the interaction terms such 

are approximated by as PI.? Pl'.tPI".LPI''~.~ 
t t 
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The quasi-particle energy of the Landau theory in the presence of other excitations can be 
identified as the effective one-particle energy in this approximation 

~ 1 . "  = z;: + f i I a l 1 2 ~ I a l , 1 2 ( s n V , - ~ )  (12) 
I' 

where ( S ~ I , . ~ )  = (pl.,,pl,,,) t for EV > EF and Snl,.,, = - ( h i , . J ~ ~ , ~ )  for €1, c CF. As Iat12 is 
proportional to 1/N, (where N. is the number of sites) because the scattering potential is 
due to a single impurity, the energy shift in (12) is of the order of l/Ns. 

As (p!,opl,m) -+ 0 as T + 0, the quasi-particle interaction does not contribute to the 
linear term in the specific heat which can be calculated from the non-interacting quasi- 
particle Hamiltonian (5). Using the Sommerfeld expansion we find for the total specific 
heat coefficient y 

where po(o) is the density of states of the conduction electrons alone, hmp(o) is the extra 
impurity contribution, and EF is the Fermi energy. In calculating the susceptibility the quasi- 
particle interaction has to be taken into account. Using the mean field approximation for 
this interaction we obtain for the total susceptibility in zem field 

where (h,-,) =El  [a[l2(8nf.--),  and k = ~ / L B H / ~ .  
We can forget about the quasi-particle interaction term in calculating a ( 6 n d , - , ) / a H  on 

the right-hand side of (14) as it will gives terms of the order of 1/N: which can be ignored, 
where N, is the total number of sites in the lattice. Working to order l/Ns we find 

a(6nd,-,)/ah = Pd(EF) (15) 

where f i d ( 0 )  = El la~l~S(o - Z;'",. We also have in zero field 

Hence, to leading order l/Ns, the impurity susceptibility is given by 

,%mp = f(gCLB)2(fimp(EF) + fi&(eF)). (17) 

The total charge susceptibility at T = 0, xc = dNO/dq, where NO is the expectation value 
of the total number operator for the electrons, can be calculated following precisely the 
same argument. The result for the impurity contribution is 

(18) 

Eliminating the term in 0 between (17) and (18). and the term in &,(cF) using (13), gives 
the well known Fermi liquid relation 

Xc.imp = 2(fimp(6F) - Opj(6F)). 

(19) 

In the Kondo limit xc.imp = 0 as the occupation of the impurity state is always unity. This 
constraint is achieved in the quasi-particle picture by the interaction term 0, the interaction 

2 2  4Ximp/(RPd2 f Xc.imp = 6 ~ i m p l r  kB. 



Fermi Iiquid theory and magnetic impuriry system: I 6281 

term self-consistently maintains the many-body resonance at the Fermi level so that the 
impurity occupation is not changed as was first pointed out by Nozikres [3]. This condition 
can be used to deduce 0. For a flat conduction band it is straightforward to show that 
&(W) = Dlmp(o), and for particle-hole symmetry ?d = 0 so that the resonance in the quasi- 
particle density of states (6) is peaked at the Fermi level and ,&,,,(EF) = I / H ~ .  We then 
find on substituting into equations (17) and (18) 

(20) 0 = H Z \  = 4 k 0 T ~  

where the Kondo temperature is defined by x , ~  = ( g f i ~ ) ~ / 4 k ~ T ~ .  
These parameters give for the ‘x/y’ or Wilson ratio R 

where xo and yo are the susceptibilities and specific heat coefficients for the conduction 
electrons alone. The argument leading to thisresult is essentially a reformulation of the one 
originally given by Nozikres [3]. 

The result (20) for the renormalized parameters can be related to the microscopic 
perturbation theory of Yamada and Yosida [IO] for the symmetric model 11 I]. If we define 
i\ and 0 via 

A =.?A c j  = z2r;l(o, o : 0, 0) (22) 

where z is the wave function renormalization factor defined in terms of the self-energy 
Zn(o) of the d electron Green function by 

(U) 

and rn$,(o, o’ : o”, 0”’) is the four-point irreducible vertex function evaluated at the 
Fermi level, then the same result (20) in the Kondo limit can be deduced from the Ward 
identities given by Yamada This result will be exploited in $e renormalized perturbation 
expansion developed in the forthcoming paper U. 

We can conjecture that the form of the effective Hamiltonian derived by Wilson for the 
s-d model is a valid description of the Fermi liquid fixed point for all parameter regimes 
of the Anderson model (we will also justify this conjecture in 11). In the other regimes the 
parameters do not merge into a single energy scale. They can -be deduced from some of 
the other techniques which have been applied to the Anderson model. For example for the 
particle-hole symmetric model, Ed - E F  = -U/Z, it is possible to calculate the renormalized 
parameters in powers of U/xA using the perturbation theory results for &imp and ymp of 
Yosida and Yamada [IO]. For the particle-hole symmetric model to third order they are 
given by 

2 = 1/[1 - C;(o)] 

= A ( 1 - ( 1 2 - H 2 ) / 4 ( ~ / H A ) Z f O ( ( U / H A ) ~ ) )  (24) 

0 = U ( l  - ( ~ ~ - 9 ) ( U / n A ) ~ + O ( ( U / l r h ) ~ ) )  (2.5) 

and 

which are valid for U < zA. So in the weak-coupling regime we find 0 - U as one 
would expect. More generally we can deduce 0 and i for the symmetric model in a similar 
way from the exact Bethe amalz results which have been expressed in a power series in 
U / R A  [SI. The results for these are shown in figure 1 plotted as a function of U/lrA.  
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The asymptotic results at weak coupling correspond to (24) and (25). and those at strong 
coupling U / z A  > 2 merge into a single energy scale corresponding to equation (20) with 
TK given by 

(26) 

Without the term zA/2U in the exponential (which is often the form used for TK for this 
model) the asymptotic agreement with ~ T K  for U >> r A  is not so good until U is in excess 
of 5nA.  

ksTK = U (A/2U)'/*exp(-nU/8A + zA/2U). 

0.0 1 .o 2.0 3 .O 4.0 u/*a 
Figure 1. A plot of the renonnalized parameters 0 and for the symmetric Anderson model 
in terms of the bare paramelen U and A. For Ihe mmparison of these paramems with 4 k s T ~  
for U > zA, the value for TK is given by (26). 

3. N-fold degenerate Anderson model 

This approach to Fermi liquid theory can be extended to other magnetic impurity models. 
For example, it can be generalized easily to the N-fold degenerate Anderson model which 
has been used widely to describe Ce and Yb impurities in simple metallic hosts, where the 
lacal states now correspond to 4f electrons or holes [12]. This model takes the form 

where the quantum number m corresponds to the z-component of the total angular 
momentum j. m takes on 2 j  + 1 = N values, and plays a role similar to U in the 
non-degenerate model, which corresponds to N = 2. There have been no first-principles 
numerical renormalization group calculations for this model giving the form of the effective 
Hamiltonian for. the low-energy excitations. However, we can conjecture by analogy with 
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the non-degenerate case that this is given by 

= x E k . m C i , m c k . m  + E ( v k t ! , m c k . m  + vk - *  ck,mcf,m) t - 
k.m k.m 

+ c Zf,mt;.mtf.tm + oEf,miif.m’ 
~m m - m ’  

where all the quantities~ in the original model are &normalized. This form will be justified 
in  paper 11. We can now~proceed to calculate xhP. &,imp atid ybp at T = 0 with our mean 
field approximation as we did earlier. The quasi-particle density of states phimP(w) is again 
a resonance but due to the lack of particle-hole symmetry Zf # 0 so that the peak of the 
resonance in general is displaced from the Fermi level. The results for ximp. xc.hp and ymp 
are 

(2% 

and (31) 
(32) 

ximp = $ g p d ’ j ( j  + ‘ 1 ) N 6 i m p ( ~ ~ ) ( 1  + ficimp(EF)) 

~Xc.imp = N@imp(EF)(I - ( N  - I ) f i f i i ( E ~ ) )  (30) 

- L  2 ’  
Emp - gn kBNfiip(tF) 

where iiimp(w) is the quasi-particle density of states (we have assumed a flat band so &(w) 
is the same as fimp(w)). Eliminating~the density of states gives the relation 

which is a generalization of (19). In the local moment limit xc,hp i 0, we can obtain from 
this result for the Wilson ratio R for general N which is N / ( N  - 1) 113, 141. 

If we assume that the Friedel sum rule is applicable to the quasi-particles, then the 
occupation number of the impurity level nf is given by 

nf =,(N/n)tan-’  (- A/Zf 1 . (34) 

This relation can be verified within perturbation theory in U from the results of Yoshimori 
[I51 if we identify the renormalized f level as Zf = z(ct - EF + ~ ( E F ) ) .  If we assume nf as 
given, we can write (34) as a relation between Zf and 

Zf = i c o t  ( n n f / N )  (35) 

and express the quasi-particle density of states evaluated at the Fermi level in the form 

hmp(e~) = sin2(nnf/N)/nZ\. (36) 

In the localized or Kondo limit nf -+ 1, xc,jip -+ 0 we can again &rive expressions 
for A, Zf and fi  in terms of a single energy scale, the Kondo temperature, using 
xi& = (.qpB)’j(j + 1)/3kB~K as a more general definition of the Kondo temperature. 
The result for is 

(37) i = kSTK[N’sin*(rr/N)/rr(N - l)] 

and for Zf from (35) 

Zf = ksTK[N’sin(n/N)cos(Ir/N)/n(N - I)]. (38) 
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Using xc.iw = 0, fi can be deduced from (30) 

fi = ( N / ( N  - 1))’ksTK. (39) 

From these results we can see the change in form of the quasi-particle density of states from 
the case N = 2 to the large N limit. These are shown in figure 2 with results ranging from 
N = 2 to N = 8. With increasing N ,  the peak shifts above the Fermi level to satisfy the 
Friedel sum rule. At the same time the resonance narrows and the width scales as A - 1 / N  
for large N .  As N -+ CO, Zf -+ kBTK and the Kondo resonance becomes a delta function 
at kB&. a result which is well known from I / N  and slave boson calculations i.121. It is 
interesting to note that fi does not tend to zero in the large N limit. Quasi-particle scattering 
diagrams, however, are negligible due to the fact that the quasi-particle density of states in 
the vicinity of the Fenni level falls off at I / N  for large N in this limit as can be seen h m  
(36). As a consequence, only the mean field diagram survives in this limit; higher-order 
diagrams have additional 1 / N  factors from the integrals over the quasi-particle density of 
states. 

0.8 

0.6 

- 
U 
3 

l i i  

2 0.4 

0.2 

0.0 
-4.0 -2.0 0.0 2.0 4.0 

w / k D f i i  

Figure 2. The quasi-panicle density of states for the N-fold degenerate model in Ihe 
Kondo limit as a function of w/ ksTK for: (i) N = 2, (ii) N = 3, (iii) N = 4, (iv) N = 6. and 
(v) N = 8. 

We can also look at the large N limit quite apart from the localized limit nf = 1. 
We take ximp = (gKB)’j(j  + I ) n r / 3 k ~ T ~ ,  which defines an energy scale k&; the nf is 
included so ximp + 0 as nf -+ 0 in the non-magnetic limit. The Friedel sum rule (34) and 
the quasi-particle density of states in this limit become 

nr = NA/n& b , , ( O )  = A/nZ: = nf/NZf (40) 

Zf = kBT. = nnfkBTA/N ( 4 1 )  

as A + 0 as N + CO. Substituting N & , ( O )  from ( 4 0 )  into (29) and (35) gives 
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and from (6) for large N 

Hence we find more generally a delta-function form for the density of quasi-particle states 
in the large N limit. In this case, however, we cannot deduce c without having more 
information about the charge susceptibility xc.hp. which we only know in the localized 
limit. 

0.6 

0.4 

0.2 

0.0 
-5.0 -4.0 -3.0 -2.0 -1.0 . 0.0 1.0 2.0 

€;/.nia 

Figure 3. The behaviour of ule quasi-panicle parameters i, <e and 6' for thc N-fold depneralc 
model (U = m. N = 8) as a function of s;/NA. 

There are exact Bethe unsufz results [I41 for the model for U -+ m, however, which 
allow the quasi-particle parameters to be estimated as we did earlier for the nondegenerate 
model. The results are shown in figures 3 and 4 for N = 8 plotted as a function of the 
bare parameter ratio $/NA, where e; = cf + A(N - I ) /x  In(xD/NA) and D is the half 
bandwidth. AS the renormalized parameters in the localized regime all scale as TK. where 
TK - exp(c;/NA), they are very small as can be seen in figure 3. In figure 4 where the 
ratios G/NA and c / N A  are plotted, it can be seen that the Kondo regime, where there is 
a singIe energy scale and the curves are flat, applies in the regime 6; < NA. 

4. n-channel Kondo model for n = 2 5  

Finally we can develop a Fermi liquid theory along similar lines for the n-channel Kondo 
problem for n = 2s which is appropriate for Mn impurities which have a half-filled d shell 
and no spin-orbit coupling. The model is of the same form as the s-d modcl with an 
exchange interaction between the impurity spin S and the conduction electrons but includes 
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1.5 

1 .o 

0.5 

, .. . , . , ,, , . , , , 

0.0 
1.0 2.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0 

e;lNA 

Figure 4. The ratio of the quasi-panicle parameren. Zrlb and ljl& for the N-fold degeneme 
model (U  = m. N = 8) as a function of 6;JNA. Only in the very loCaliled regime 
€;/NO < -3 are the two curves Hat corresponding U, a single energy scale. 

a sum over n individual conduction scattering channels 

where m is the channel index. For manganese ions the number of channels is n = 2 + 1 
with I = 2, where I is the angular momentum quantum number corresponding to d wave 
scattering and S = 5/2 for a half-filled d shell. This model can be derived from the 
corresponding Anderson model 

which now includes a Hund's rule coupling term, JH. which aligns the individual spins 
of the electrons in the impurity d shell. The n = 2s Kondo Hamiltonian follows f" a 
Schrieffer-Wolff transformation in the large Hund's rule limit JH -+ CO, when the ground- 
state configuration corresponds to a half-full shell and virtual transitions to states with one 
more and one less electron in the d shell are taken into account. This is not the most generat 
Hamiltonian of this type, it contains no offdiagonal interaction terms in the channel index m. 
The n-channel Kondo model is diagonal in the channel index so it should not be necessary 
to include non-diagonal terms for the physics of this model. We again conjecture that the 
appropriate form for the quasi-particle Hamiltonian describing the excitations near the Fermi 
liquid,fixed point corresponds to a Hamiltonian of the same form but with renormalized 
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parameters. Performing a mean field calculation as earlier for yimp, ximp and xc.imp 
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Yimp = f n 2 k i a h m p ( E F )  

ximp (w&nFimp(EF)(1+ (fi - - I ) ) h p ( € F ) )  (45) 

Xc.imp (fi@B)2%&p(<F)[l - (fi@ - 1) + 3 - b  - l))@mp(EF)] (46) 

where the renormalized parameters are indicated with a tilde. If nondiagonal interaction 
terms had been included in the Hamiltonian they would not have contributed to the mean 
field equations. 

The Friedel sum rule still applies in the Kondo limit ind implies &&J) = l/nA. The 
condition xe.imp + 0 just gives one condition on the quasi-particle parameters. A further 
condition can be obtained, as pointed out by Nozibres and Blandin [13], by using me fact 
that there should be no change in the occupation of the m-channel if the chemical potential 
changes in one of the other channels mi # m. The response in the m-channel to such a 
change is proportional to ( 2 f i  +3&)p(~p) ,  which we equate to zero. These conditions give 

(471 fi = -;& = 7 C i  = k s T ~  

with the resonance at the Fermi level, and the Kondo temperature is defined for general n 
via nmp = n 2 n k s / 6 T ~ .  These agree with the results for the s-d model (the Kondo limit 
of the non-degenerate Anderson model) for n = 1. With these values for the renormalized 
parameters the susceptibility % given by 

Ximp = (gPd2n(n  + 2) /12ksT~  (48) 

and the Wilson 'x/y' ratio 

which is as derived by Nozibres and Blandin 1131 and can also be deduced from the exact 
Bethe ansarz results 1161 and microscopic Fermi liquid theory [17]. The model does not 
behave as a Fermi liquid in the underscreened case n < 2s or the overscreened case 
n > 2s. It is not clear whether or not a simple effective Hamiltonians can be found to give 
the low-temperature behaviour in these more general models [ 161. 

5. Conclusions 

We have shown that it is possible to give explicit quasi-particle Hamiltonians for several 
magnetic impurity models which, within a Landau-lie mean field approximation, give exact 
results in the Fermi liquid regime as T + 0. The renormalized parameters, Zd, A, 0, and 
&, can be expressed in terms of the self-energy, its derivative, and the irreducible four-point 
vertices (which are local for all these impurity models) of the conventional diagrammatic 
perturbation theoly, evaluated at the Fermi level. This approach to Fermi liquid theory 
combines the intuitive elements of the phenomenological theory of Landau with the concept 
of an effective Hamiltonian about the relevant fixed point in the renormalization group 
approach. We leave the calculation of transport properties to the sequel paper. There we will 
develop the approach further within the revised framework of a renormalized perturbation 
theory. The starting point will be the quasi-particle Hamiltonians used here but additional 
interactions have to be included to allow the extension of the calculations beyond the Fermi 
liquid regime. 
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